一般地,总平方和、因子平方和不会相等。之间的差额就是误差平方和。当然,为了验证平方和分解,还要计算一下误差平方和。
为了能使用f分布进行统计检验,还需要用到自由度的概念来构造符合f分布的统计值。
自由度(degree of freedom, df),在数学中能够自由取值的变量个数,如有3个变量x、y、z,但x+y+z=18,其自由度等于2。在统计学中,自由度指的是计算某一统计量时,取值不受限制的变量个数。通常df=n-k。其中n为样本含量,k为被限制的条件数或变量个数,或计算某一统计量时用到其它独立统计量的个数。电子游戏中也有自由度这个概念。这个,我就不清楚了。统计学上的自由度是指当以样本的统计量来估计总体的参数时,
样本中独立或能自由变化的资料的个数,称为该统计量的自由度。 统计学上的自由度包括两方面的内容:
首先,在估计总体的平均数时,由于样本中的 n 个数都是相互独立的,从其中抽出任何一个数都不影响其他数据,所以其自由度为n。 在估计总体的方差时,使用的是离差平方和。只要n-1个数的离差平方和确定了,方差也就确定了;因为在均值确定后,如果知道了其中n-1个数的值,第n个数的值也就确定了。这里,均值就相当于一个限制条件,由于加了这个限制条件,估计总体方差的自由度为n-1。例如,有一个有4个数据(n=4)的样本, 其平均值m等于5,即受到m=5的条件限制, 在自由确定4、2、5三个数据后, 第四个数据只能是9, 否则m≠5。因而这里的自由度v=n-1=4-1=3。推而广之,任何统计量的自由度v=n-限制条件的个数。