当前位置:

2016年临床执业医师生物化学教材笔记:第十章代谢总论

发表时间:2015/11/16 16:18:10 来源:互联网 点击关注微信:关注中大网校微信
关注公众号

第十章 代谢总论

第一节 概述

一、定义

代谢(metabolism)又称新陈代谢,是生物体内所有化学变化的总称。代谢是生命的基本特征。

代谢包括合成代谢和分解代谢,前者又称同化作用,是指机体从环境中摄取营养物质,把它们转化为自身物质;后者又称异化作用,是指机体将自身物质转化为代谢产物,排出体外。二者是相辅相成的,它们的平衡使生物体既保持自身的稳定,又能不断更新,以适应环境。

二、代谢途径

代谢过程是通过一系列酶促反应完成的。完成某一代谢过程的一组相互衔接的酶促反应称为代谢途径。代谢途径有以下特点:

1.没有完全可逆的代谢途径。物质的合成与分解,有的要完全不同的两条代谢途径(如脂肪酸的代谢);有的要部分地通过单向不可逆反应(如糖代谢)。

2.代谢途径的形式是多样的,有直线型的,有分支型的,也有环形的。

3.代谢途径有确定的细胞定位。酶在细胞内有确定的分布区域,所以每个代谢过程都是在确定的区域进行的。例如,糖酵解在细胞质中进行,三羧酸循环在线粒体基质中进行,氧化磷酸化在线粒体内膜进行。

4.代谢途径是相互沟通的。各个代谢途径之间,可通过共同的中间代谢物而相互交叉,也可通过过渡步骤相互衔接。这样各种代谢途径就联系起来,构成复杂的代谢网络。通过网络,各种物质的代谢可以协调进行,某些物质还可相互转化。

5.代谢途径之间有能量关联。通常合成代谢消耗能量,分解代谢释放能量,二者通过ATP等高能化合物作为能量载体而连接起来。

6.代谢途径的流量可调控。机体在不同的情况下需要不同的代谢速度,以提供适量的能量或代谢物。这是通过控制物质代谢的流量来实现的。因为代谢是酶促过程,所以可通过控制酶的活力与数量来实现。每个代谢途径的流量,都受反应速度最慢的步骤的限制,这个步骤称为限速步骤,或关键步骤,这个酶称为限速酶或关键酶。限速步骤一般是代谢途径或分支的第一步,这样可避免有害中间产物的积累。限速步骤一般是不可逆反应,其逆过程往往由另一种酶催化。限速酶的活性甚至数量,往往受到多种机制的调节,最普遍的是反馈抑制,即代谢终产物的积累对限速酶产生抑制。

第二节 合成代谢

一、阶段性和趋异性

生物分子结构的多层次性决定了合成代谢的阶段性。首先由简单的无机分子(CO2、NH3、H2O等)合成生物小分子(单糖、氨基酸、核苷酸等),再用这些构件合成生物大分子,进而组装成各种生物结构。

趋异性是指随着合成代谢阶段的上升,倾向于产生种类更多的产物。

二、营养依赖性

人类不能从无到有合成所有的生物分子。那些不能自己合成,只能从食物中摄取的物质,称为是必需的。如氨基酸中有10种是必需氨基酸,维生素和某些高不饱和脂肪酸也是必需的。严格说,糖是非必需的。

三、需要能量推动

合成代谢需要消耗能量。合成生物小分子的能量直接来自ATP和NADPH,合成生物大分子直接来自核苷三磷酸。

合成代谢所需的能量主要用于活化前体或构件分子,以及用于还原步骤等。

四、信息来源

生物大分子有两种组装模式:

1.模板指导组装核酸和蛋白质的合成,都以先在的信息分子为模板。如DNA复制、转录以及反转录、翻译都是在模板指导下的聚合过程。所需的信息存在于模板分子的构件序列中,能量来自活化的构件分子或ATP等。生物大分子形成高级结构并构成亚细胞结构是自我组装过程,其信息存在于一级结构中,其能量来自非共价作用力,即组装过程中释放的自由能。

2.酶促组装有些构件序列简单均一的大分子通过酶促组装聚合而成。其信息指令来自酶分子,不需要模板。如糖原、肽聚糖、一些小肽等,都在专一的酶指导和催化下合成。

第三节 分解代谢

一、阶段性和趋同性

生物大分子的分解有三个阶段:水解产生构件分子、氧化分解产生乙酰辅酶A、氧化成二氧化碳和水。在这个过程中,随着结构层次的降低,倾向产生少数共同的分解产物,即具有趋同性。

二、意义

分解代谢的各个阶段都是释放能量的过程。第一阶段放能很少。第二阶段约占三分之一,可推动ATP和NADPH的合成,它们可作为能量载体向体内的耗能过程提供能量。第三阶段通过三羧酸循环和氧化磷酸化释放其余的能量,主要用于ATP的合成。三羧酸循环形成二氧化碳和还原辅酶,后者在氧化磷酸化过程中释放能量,形成ATP和水。

第四节 代谢中的能量与调控

一、代谢与能量

1.有关定律

**热力学第一定律:能量守恒定律

**热力学第二定律:熵定律

**自由能:ΔG=ΔH—TΔS,<0为自发。

自由能表示系统中总能量,对于化学反应与每一组分的化学稳定性有关,变化为负值表示由不稳定的化学能高的状态变成低能状态,是放能反应。

ΔG0是标准自由能变化,各物质的浓度都是1mol/L,其值为2.303RTlogK。生化中常用ΔG0’,即pH=7时的值。

2.ATP及其偶联作用

生物体内的放能和需能反应经常以ATP相偶联。ATP可分解为ADP或AMP。前者如各种激酶,后者如乙酰辅酶A的合成。反应过程中有的由一个酶催化,如谷氨酰胺合成酶,先生成磷酰谷氨酸中间物,它是谷氨酸的活化形式,再与氨反应;有的需多个酶参与,如蔗糖的合成需3个酶,首先生成葡萄糖6磷酸的活化形式;也有的没有ATP直接参与,如苹果酸生成草酰乙酸,是需能反应,利用下一步由草酰乙酸生成柠檬酸时高能硫酯键放能促进其反应。

3.其它高能化合物

UTP参与多糖合成,CTP参与脂类合成,GTP参与蛋白质合成。

烯醇酯、硫酯等也是高能化合物,如磷酸烯醇式丙酮酸、乙酰辅酶A等。高能化合物根据键型可分为磷氧键型、氮磷键型、硫酯键型、甲硫键型等,绝大多数含磷酸基团。

磷酸肌酸和磷酸精氨酸可通过磷酸基团的转移作为储能物质,称为磷酸原。磷酸肌酸是易兴奋组织如肌肉、脑、神经等唯一能起暂时储能作用的物质ΔG0’为-10.3千卡/摩尔,是ATP的能量储存库。肌肉中的含量比ATP高3-4倍,可维持ATP水平的恒定。磷酸精氨酸是无脊椎动物肌肉中的储能物质,与磷酸肌酸类似。

二、代谢调节

代谢过程是一系列酶促反应,可通过酶活性和数量进行调节。如别构调节、共价调节、同工酶、诱导酶、多酶体系等调节。此外,神经和激素的调节也起着重要作用。

代谢是动态的。生物体内总是同时进行着分解代谢与合成代谢,分解老化的生物分子并合成新的分子来代替。即使体重保持不变,代谢也在不断地进行。

本 章 名 词 解 释

分解代谢反应(catabolic reaction):降解复杂分子为生物体提供小的构件分子和能量

代谢反应。

合成代谢反应(anablic reaction):合成用于细胞维持和生长所需分子的代谢反应。

反馈抑制(feedback inbition):催化一个代谢途径中前面反应的酶受到同一途径终产物抑制的现象

前馈激活(feed-forward activition):代谢途径中一个酶被该途径中前面产生的代谢物激活的现象。

标准自由能变化(△GO):相应于在一系列标准条件(温度298K,压力1atm(=101.325KPa),所有溶质的浓度都是不是mol/L)下发生的反应自由能变化。△GO′表示pH7.0条件下的标准自由能变化。

标准还原电动势(EO′):25℃和pH7.0条件下,还原剂和它的氧化形式在1mol/L浓度下表现出的电动势.

编辑推荐:

2016年临床执业医师考试考试宝典免费下载

2016年临床执业医师考试网络课堂招生中

(责任编辑:昆凌)

2页,当前第1页  第一页  前一页  下一页
最近更新 考试动态 更多>