为了帮助考生更好的复习2012年注册测绘师考试,此处特地整理编辑2012年注册测绘师测绘案例分析辅导资料,希望可以对参加2012年注册测绘师考试的各位同学有所帮助!
产品说明中提供的测距精度 如1mm+2ppm具体是什么概念
1mm+2ppm是人们通常对1mm+2ppm×D(公里)的缩写,它反映的是全站仪或者测距仪的标称测距精度。其中: 1mm,代表仪器的 固定误差,主要是由仪器加常数的测定误差、对中误差、测相误差造成的,固定误差与测量的距离没有关系。即不管测量的实际距离多远,全站仪都将存在不大于该值的固定误差。 2ppm×D公里代表比例误差,其中的2是比例误差系数,它主要由仪器频率误差、大气折射率误差引起。ppm是百万分之(几)的意思,D是全站仪或者测距仪实际测量的距离值,单位是公里。随着实际测量距的变化,仪器的这比例误差部分也就按比例的变化。例如,当距离为1公里的时候,比例误差为2mm。 对于一台测距精度为1mm+2ppm的全站仪或者测距仪,当被测量距离为1公里时,仪器的测距精度为1mm+2ppm×1(公里)=3mm,也就是说,全站仪测距1公里,最大测距误差不大于3mm. 特别指出的是,标称测距精度是一中误差极限的概念,也就是说,每台全站仪或者测距仪测距误差不得超过生产厂家提供的标称精度。标称精度不是每个仪器的实际精度。据实际统计资料表明,相当多的徕卡全站仪、测距仪的实际精度都高于标称精度一倍以上。
常数ρ=206265是怎么计算出来的
测量中进行计算时经常用到一个常数ρ,其值约为206265,它的含义是指"一弧度对应的秒值",即一弧度约等于206265秒,因此可用下式精确计算之:
ρ=180×3600/π=206264.806247096≌206265
ρ通常用于单位转换,在进行计算时需要将弧度(单位:米/米)转换为秒时×ρ,将秒值转换为弧度时除以ρ即可.
常用的参考椭球体参数是什么
旋转椭球体的形状和大小由椭球基本元素确定,即
长半轴 a
短半轴 b
扁 率 a=(a-b)/a某一国家或地区为处理测量成果而采用与大地体的形状大小最接近,又适合本国或本地区要求的旋转椭球,这样的椭球体称为参考椭球体。确定参考椭球体与大地体之间的相对位置关系,称为椭球体定位。参考椭球体面只具有几何意义而无物理意义,它是严格意义上的测量计算基准面。
几个世纪以来,许多学者分别测算出了许多椭球体元素值,表1-1列出了几个着名的椭球体。我国的1954年北京坐标系采用的是克拉索夫斯基椭球,1980国家大地坐标系采用的是1975国际椭球,而全球定位系统(GPS)采用的是WGS-84椭球。
表1-1
|
椭球名称
|
长半轴a
(m)
|
短半轴b
(m)
|
扁 率α
|
计算年代和国家
|
备 注
|
|
贝塞尔
|
6377397
|
6356079
|
1:299.152
|
1841 德国
|
|
|
海福特
|
6378388
|
6356912
|
1:297.0
|
1910 美国
|
1942年国际
第一个推荐值
|
|
克拉索夫斯基
|
6378245
|
6356863
|
1:298.3
|
1940 前苏联
|
中国1954年
北京坐标系采用
|
|
1975国际椭球
|
6378140
|
6356755
|
1:298.257
|
1975国际
第三个推荐值
|
中国1980年国家
大地坐标系采用
|
|
WGS-84
|
6378137
|
6356752
|
1:298.257
|
1979国际
第四个推荐值
|
美国GPS采用
|
由于参考椭球的扁率很小,在小区域的普通测量中可将地(椭)球看作圆球,其半径R=(a+a+b)/3=6371km。
其它资料供参考:
椭球名称 年代 长半径 扁率 附注
德兰勃 1800 6 375 653 1:334.0 法国
瓦尔别克 1819 6 376 896 1:302.8 俄国
埃弗瑞斯特 1830 6 377 276 1:300.801 英国
艾黎 1830 6 376 542 1:299.3 英国
贝塞尔 1841 6 377 397 1:299.152 德国
克拉克 1856 6 377 862 1:298.1 英国
克拉克 1863 6 378 288 1:294.4 英国
克拉克 1866 6 378 206 1:294.978 英国
克拉克 1880 6 378 249 1:293.459 英国
日丹诺夫 1893 6 377 717 1:299.7 俄国
赫尔默特 1906 6 378 140 1:298.3 德国
海福特 1906 6 378 283 1:297.8 美国
赫尔默特 1907 6 378 200 1:298.3 德国
海福特 1910 6 378 388 1:297.0 1942年国际第一个推荐值
热海景良 1933 6 376 918 1:310.6 日本
川烟辛夫 1935 6 377 087 1:304.0 日本
克拉索夫斯基 1940 6 378 245 1:298.3 苏联
柯洛柯夫 1955 6 378 203 1:298.3 苏联
霍夫 1956 6 378 270 1:297.0 美国
WGS 1960 6 378 156 1:298.3 美国国防部 1960年世界大地坐标系
弗希尔 1960 6 378 160 1:298.329 美国
凡氏(C一5) 1965 6 378 169 1:298.25 美国施密森天文台
相关文章:
近期直播
免费章节课
课程推荐
注册测绘师
[协议护航班班]
签署协议不过退费
注册测绘师
[冲关畅学班]
5大课程模块 2大研发资料
注册测绘师
[精品乐学班]
3大课程模块 校方服务