为帮助考生更好地复习2014年注册电气工程师考试,小编整理了电气工程师考试辅导资料供大家参考复习,希望对您有所帮助!
5今后机组状态监测及状态检修设想
5.1机组状态监测对象及目标
总体而言:状态监测系统应包括如下几方面的内容:机组稳定性状态监测子系统、机组效率状态监测子系统、机组气蚀状态监测子系统、发电机运行状态监测子系统和其他系统传输的开关量、模拟量等。并且包括将这些系统整合起来进行数据管理、诊断及网络发布的状态诊断网络,通过这一网络,则可使电厂各生产单位及管理部门可随时灵活地管理机组状态,达到为生产和检修服务的目的,如图1所示:图1
5.2各部分功能说明
稳定性状态监测子系统部分
此部分系统我厂已经进行了具体实施,在此不再详述。
机组效率状态监测子系统部分
水轮机效率因机型的不同,设计制造水平的不同而不同。在已投入运行的机组中,有的由于设计选造型不合理或在制造安装中存在着缺陷和遗留问题,使得水轮机效率不高。特别是有的机组由于长期处在低效率区或在低水头下运行,严重影响着机组效率的发挥,同时还会造成严重的振动和气蚀破坏。因此需要摸清现有运行机组在运行中的实际效率状况,探讨和解决运行工况对水轮机效率的影响。为了充分利用水力资源、提高水力发电厂的经济效益、实现水力机组乃至整个电网的经济运行,需要对水电厂现场水力机组进行效率监测,实测出水力机组乃至整个水电厂的动力特性,使得各台机组的效率试验成果成为整个电网优化运行的可靠的基础技术资料并指导水电厂经济运行。
水轮机效率的实时监测对电站的经济运行有着重要的作用。水轮机效率的在线监测既可用于机组在安装竣工或大修结束后的现场验收试验,以便检查设计、制造、安装和检修质量是否满足要求,又能通过对机组运行性能进行长期连续监测,提供在不同的水流和工况条件下水轮机性能的实时数据,为确定电厂经济运行中的开机台数和负荷优化分配以及机组的状态检修等提供参考。因此水轮机效率在线监测一直是实现电厂经济技术指标考核和经济运行的一个重大科技攻关课题。随着计算机、通信、、测控等一系列新技术的迅速发展和在电厂的应用,给效率在线监测项目的开发提供了成熟的技术基础。当前,以厂网分开为基础的电力体制改革方案已经出台,电力市场竞价上网亦将成为必然的发展趋势。因此,在保证安全运行,满足电力系统要求的基础上,不断提高水资源利用率,设备可用率,减少运行和维护费用,已成为每个电厂迫切需要开展工作,以提高自身竞争力面向市场的重要目标。
在线监测机组效率同机组效率测试是不同的要求,因为水头在生产过程中不可能人为很好地控制,所以在线监测强调的是在实际运行工况下机组不同效率性能的比较和择优,也就是说,在线效率监测并非是为了测得机组的某一确定效率值,而是评价机组在当前蓄水条件和生产条件的约束下,应该采用何种运行方式最为经济,甚至可以实现多台机组的综合经济指标最优。这些效益及显着的优点如果不进行机组在线状态监测是不可能得到的。
另外,效率监测对于机组稳定性监测、气蚀监测及故障诊断是非常好的映证和补充,可以降低误判断的几率,缩短积累经验的周期,为某厂机组运行特性曲线:
机组气蚀状态监测子系统
水轮机气蚀监测能够准确地监测水轮机的气蚀强度,使机组能够在高效率区运行,减少水轮机叶片的气蚀破坏,通过对气蚀量历史数据的累积测量,可以标定水轮机的气蚀破坏程度,准确决策机组的检修间隔,为机组由计划检修向状态检修过渡奠定基础。
反击式水轮机在其运行时,在转轮出口和尾水管进口处往往形成负压,当压力降低到小于气化压力时,水就汽化,在水流中产生许多气泡,气泡随着水流移动到压力较高处,便骤然消失。在此瞬间,水流质点以高速度向气泡中心撞击,水流质点这种高速度的碰撞会引起水压力的增高,然后被强烈碰撞而压缩的水流质点,又向相反的方向扩散,从而造成气泡处的压力急骤降低。这样就形成气泡中心的压力,在一段时间内周期性的波动。这种由气泡的产生和消失过程中引起的一系列现象称为气蚀现象。根据现代对气蚀的研究,虽说还不够充分,但比较成熟和一致的解释,除上述周期性的压力波动外,还有下列现象:
当压力降低到饱和蒸气压时,水流不仅产生气泡,溶解在水中的气体也以气泡形式选出,这种空气泡会随着水流排出。当气泡的产生和消失发生在固体表面时,水流质点高速度的周期性冲击象锐利的刀尖一样剧烈地打击着固体表面,造成固体表面的机械破坏,称为剥蚀。如果固体表面粗糙,则剥蚀更严重。
此外,气泡受压缩时,由于体积缩小而温度升高,再加上水流质点相互高速度的撞击和对固体的撞击也产生热量,实验证明,当气泡凝结时,所引起的局部温升可达300℃左右,使得冷热固体形成了热电偶,彼此间产生了电流,这是固体表面遭受侵蚀的电化学原因。
综上所述,气蚀是一个综合的物理现象的而非单一的物理量,因此它是不可能通过某一单一的物理量来描述和测量的,而只能通过综合的分析和诊断得到一个评价性的描述,例如:某转轮气蚀严重,在不改变转轮尺寸的情况下仅仅替换转轮的材质,就有可能完全消除气蚀产生的破坏,但这时的水力及机械作用量的测量结果将和原先有气蚀破坏时完全一样,所以气蚀监测的意义就在于评估这种破坏能力的大小或效应,而非测定其破坏后果,当然,也可以通过经验的积累使这两者产生一种归纳上的联系,但这种归纳的理论化和效果描述在目前还十分困难,很难用于推广和预测。
根据气蚀发生的条件,水轮机中的气蚀一般可分为3类:
翼型气蚀这是反击式水轮机普遍具有的气蚀现象。水流流经叶片时,在叶片表面形成压力差,使转轮旋转作功。通常叶片的正面是正压力,而背面是负压力,这种负压是转轮作功所必须的,但它又造成了气蚀条件。从理论上讲,这个气蚀条件可从水轮机安装高度上加以解决,所以翼型气蚀产生的主要原因是由于转轮叶片制造中不符合模型要求而引起的。在运行中由于运行工况不良也会引起翼型气蚀。
当水轮机运行在低水头和低负荷运行时,水流经过叶片就会产生脱流和旋涡,转轮出口处每一个叶片形成一个旋涡,再加上整个转轮出口的旋转水流,就在转轮和尾水管进口处形成一个大旋涡。其旋涡中心产生很大的真空,形成空腔气蚀,这种旋涡以一定的频率在尾水管内旋转,而其中的真空带周期性的扫射在尾水管的四周壁上,结果是一方面造成尾水管壁的气蚀破坏,另一方面产生周期性的压力波,形成强烈噪音,严重时可引起整个机组振动。
在导叶下端面间隙处,导叶关闭时导叶与导叶立面间隙处,以及转轮止漏装置间隙处,当水流通过这些较小的间隙时,流速产生局部增高和压力降低因而产生气蚀,这种现象称为间隙气蚀。当机组在低负荷运行时,导叶开度较小,局部流速增高,压力降低,很容易产生间隙气蚀。
以上三种气蚀对效率和稳定性影响最大的当属空腔气蚀,目前,对空腔气蚀和间隙气蚀均可采用综合分析法准确的判断和监测,即通过测量尾水管压力脉动、尾水管振动、顶盖振动、水导轴承涡动、止漏装置水压脉动、导叶后水压脉动等等这些量的综合分析,可以评估空腔气蚀及间隙气蚀效应的强弱,对于翼型气蚀,其产生的效应频率宽广,必须用涵盖整个音频范围的分析设备和仪器来加以控制和分析,造价昂贵,而且因为翼型气蚀发生的位置对监测效果影响较大,所以对于翼型气蚀仅限于发现其产生,很难评估其破坏能力,因此可知绝大多数可以采用低廉的综合分析法,避免空腔气蚀和间隙气蚀,已经可以产生非常明显的经济效益。
编辑推荐:
更多关注:2014年电气工程师考试时间 电气工程师培训 电气工程师真题 电气工程师科目
(责任编辑:xy)