2013年统计师考试时间为10月13日,为了帮助考生系统的学习统计师考试课程,全面了解统计师考试的教材重点,小编特编辑了2013年统计师考试统计基础理论及相关知识辅导资料,希望对您参加本次考试有所帮助!
相关分析与回归分析
相关分析是研究两个或两个以上变量之间相关关系的方法论,而回归分析是研究变量之间相关关系类型,进而掌握其发展变化规律,预测未来的方法论。
相关关系
一.相关关系
在现实世界中,任何事物或现象都不是孤立存在的,而是相互联系、相互制约、相互依存的。当某些现象发生变化时,另一现象也会随之发生变化。如商品价格的变化会刺激或抑制商品销售量的变化;劳动力素质的高低会影响企业的效益;直接材料、直接人工的价格变化会对产品销售成本有直接的影响;居民收入的高低会影响对该企业产品的需求量等等。
研究这些现象之间的依存关系,找出它们之间的变化规律,是对经搜集、整理过的统计数据进行数据分析,为客观、科学地统计提供依据。
现象间的依存关系大致可以分成两种类型:一类是函数关系,另一类是相关关系。
(1)函数关系。函数是指现象之间有一种严格的确定性的依存关系。表现为某一现象发生变化另一现象也随之发生变化,而且有确定的值与之相对应。例如,银行的1年期存款利率为年息1.98%,存入的本金用x表示,到期本息用y表示,则y=x+1.98%x(不考虑利息税);
(2)相关关系。相关关系是指客观现象之间确实存在的,但数量上不是严格对应的依存关系。在这种关系中,对于某一现象的每一数值,可以有另一现象的若干数值与之相对应。例如成本的高低与利润的多少有密切关系,但某一确定的成本与相对应的利润的数量关系却是不确定的。这是因为影响利润的因素除了成本外,还有价格、供求平衡、消费嗜好等因素以及其他偶然因素的影响
相关关系和函数关系既有区别,又有联系。有些函数关系往往因为有观察或测量误差以及各种随机因素的干扰等原因,在实际中常常通过相关关系表现出来;而在研究相关关系时,当对其数量间的规律性了解得越深刻的时候,其相关关系就越有可能转化为函数关系或借助函数关系来表现。
(3)相关关系的两个特点
①现象之间确实存在着数量上的依存关系。就是说,一个现象发生数量上的变化,另一个现象也会相应地发生数量上的变化。
②现象间的数量依存关系值是不确定的。就是说,一个现象发生数量上的变化,另一个现象会有几个可能值与之对应,而不是唯一确定的值。
参数估计
参数估计是用样本统计量去估计总体的参数。
用样本统计量来估计总体参数有两种方法:点估计和区间估计
一.点估计与区间估计
点估计,是用样本统计量的实现值来近似相应的总体参数。
区间估计,是根据估计可靠程度的要求,利用随机抽取的样本的统计量确定能够覆盖总体参数的可能区间的一种估计方法。
区间估计是包括样本统计量在内(有时是以统计量为中心)的一个区间,该区间通常是由样本统计量加减估计标准误差得到的。与点估计不同,进行区间估计时,根据样本统计量的抽样分布,可以对统计量与总体参数的接近程度给出一个概率度量。
标准正态分布为N(0,1)分布,将概率分布标准化的公式为:
将z所对应的概率称为置信度或置信水平,将表示的范围称为置信区间。
以68.73%的置信水平推断总体参数推断总体参数的置信区间为(z=1)
以95.45%的置信水平推断总体参数推断总体参数的置信区间为(z=2)
以99.73%的置信水平推断总体参数推断总体参数的置信区间为(z=3)
二.评价估计量的标准
用于估计总体参数的估计量可以有很多,如何选择估计效果最好的那种估计量,评价估计量的好坏的标准具体有:
1.无偏性,是指估计量抽样分布的期望值等于被估计的总体参数。
2.有效性,是指估计量的方差尽可能小。
有效性是指估计量的方差尽可能小。对同一个总体参数的两个无偏估计量,有更小方差的估计量更有效。
3.一致性,是指随着样本量的增大,点估计量的值越来越接近被估计总体的参数。
即大样本给出的估计量要比一个小样本给出的估计量更接近总体的参数。从这个意义上说,样本均值是总体均值的一个一致估计量。
(二)样本比例的抽样分布
比例是指具有某种属性的单位占全部单位数的比重。
总体比例(通常用表示)是总体中具有某种属性的单位数占全部总体单位数的比例,是一个参数,通常是未知的,也是我们想通过抽样得到的说明总体特征的数据。
样本比例(通常用p表示)是随机抽取的样本中具有某种属性的单位数占样本全部单位数的比例,是一个样本统计量,是随机变量,对于一个已经抽取出来的样本来讲,是可以观察到的。描述所有可能样本比例的概率分布就是样本比例的抽样分布。
当样本容量比较大时,样本比例p近似服从正态分布,且有p的数学期望就是总体比率π,即
而P的方差与抽样方法有关,在重置抽样下为,在不重置抽样下为
即在重置抽样时, p的分布为p~N
在不重置抽样时, p的分布为p~N
一般讲,当 np≥5,并n(1-p)≥5时,就可以认为样本容量足够大。对于无限总体进行不重置抽样时,可以按照重置抽样计算,当总体为有限总体,当N比较大,而n/N 5%时,修正系数可以近似为1,这时也可以按重置抽样计算。
从上述分析可以看出,随着样本容量的增大,样本比例的方差愈来愈小,说明样本比例随样本容量增大,围绕总体比例分布的峰度愈来愈高。
三.统计量的标准误差
统计量的标准误差也称为标准误,是指样本统计量分布的标准差。可用于衡量样本统计量的离散程度。在参数估计中,它是用于衡量样本统计量与总体参数之间差距的一个重要尺度。
当总体标准差未知时,可用样本标准差s代替计算,这时计算的标准误差称为估计标准误差。
同样,当总体比例的方差 π(1-π)未知时,可用样本比例的方差p(1-p)代替
相关文章:
更多关注:统计师考试报名时间 2012年统计师考试证书领取 报考条件 考试培训
(责任编辑:xiaolingling)